1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
mariahalfey20 edited this page 2025-04-11 01:38:50 +08:00
This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.


Today, we are delighted to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, in addition to the distilled versions varying from 1.5 to 70 billion parameters to develop, experiment, and responsibly scale your generative AI ideas on AWS.

In this post, we demonstrate how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to deploy the distilled variations of the models too.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language design (LLM) developed by DeepSeek AI that utilizes support learning to boost thinking capabilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. A key identifying feature is its reinforcement learning (RL) action, which was used to improve the design's reactions beyond the basic pre-training and tweak process. By integrating RL, DeepSeek-R1 can adapt more efficiently to user feedback and objectives, ultimately improving both significance and clarity. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) approach, implying it's geared up to break down complicated inquiries and reason through them in a detailed manner. This directed reasoning process permits the design to produce more precise, transparent, and detailed answers. This design combines RL-based fine-tuning with CoT capabilities, aiming to produce structured responses while focusing on interpretability and user interaction. With its wide-ranging abilities DeepSeek-R1 has captured the industry's attention as a versatile text-generation design that can be incorporated into various workflows such as representatives, rational thinking and data analysis jobs.

DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture enables activation of 37 billion parameters, making it possible for effective reasoning by routing inquiries to the most appropriate professional "clusters." This technique permits the model to focus on various issue domains while maintaining total effectiveness. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will utilize an ml.p5e.48 xlarge instance to deploy the design. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the reasoning capabilities of the main R1 model to more effective architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a process of training smaller sized, more effective models to simulate the behavior and reasoning patterns of the larger DeepSeek-R1 model, utilizing it as a teacher design.

You can release DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we recommend releasing this model with guardrails in place. In this blog site, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid damaging material, and examine models against essential security criteria. At the time of composing this blog site, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can create several guardrails tailored to different use cases and use them to the DeepSeek-R1 model, improving user experiences and standardizing safety controls throughout your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 design, you require access to an ml.p5e instance. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and confirm you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To request a limit increase, develop a limit boost request and connect to your account group.

Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) permissions to utilize Amazon Bedrock Guardrails. For directions, see Set up permissions to use guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails enables you to present safeguards, avoid damaging material, and evaluate designs against key security criteria. You can execute precaution for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This allows you to use guardrails to examine user inputs and model reactions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The basic circulation includes the following actions: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for inference. After receiving the model's output, another guardrail check is applied. If the output passes this final check, it's returned as the outcome. However, if either the input or output is intervened by the guardrail, a message is returned showing the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following areas show inference utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:

1. On the Amazon Bedrock console, choose Model brochure under Foundation models in the navigation pane. At the time of composing this post, you can use the InvokeModel API to invoke the model. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a supplier and select the DeepSeek-R1 design.

The model detail page supplies important details about the design's capabilities, rates structure, and execution guidelines. You can discover detailed use directions, consisting of sample API calls and code bits for integration. The design supports various text generation tasks, consisting of content creation, code generation, and concern answering, using its support finding out optimization and CoT thinking capabilities. The page likewise includes deployment choices and licensing details to assist you get going with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, select Deploy.

You will be triggered to configure the deployment details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, go into an endpoint name (between 1-50 alphanumeric characters). 5. For Variety of circumstances, go into a variety of circumstances (in between 1-100). 6. For example type, pick your circumstances type. For optimal efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is recommended. Optionally, you can configure advanced security and facilities settings, consisting of virtual private cloud (VPC) networking, service role authorizations, and file encryption settings. For the majority of utilize cases, the default settings will work well. However, for production deployments, you might desire to evaluate these settings to line up with your organization's security and compliance requirements. 7. Choose Deploy to begin using the model.

When the release is complete, you can test DeepSeek-R1's capabilities straight in the Amazon Bedrock play area. 8. Choose Open in play ground to access an interactive user interface where you can explore different triggers and change design specifications like temperature and optimum length. When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimal outcomes. For instance, content for inference.

This is an excellent method to explore the design's thinking and text generation capabilities before integrating it into your applications. The play ground supplies instant feedback, helping you comprehend how the design reacts to numerous inputs and letting you tweak your prompts for optimal outcomes.

You can rapidly check the design in the play ground through the UI. However, to invoke the deployed model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run reasoning using guardrails with the released DeepSeek-R1 endpoint

The following code example demonstrates how to carry out inference using a released DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually created the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime customer, sets up inference specifications, and sends out a demand to create text based on a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML options that you can deploy with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your data, and release them into production using either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart uses two hassle-free approaches: utilizing the user-friendly SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's explore both techniques to help you choose the method that finest fits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to release DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, choose Studio in the navigation pane. 2. First-time users will be triggered to create a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The model web browser shows available models, with details like the provider name and design abilities.

4. Look for DeepSeek-R1 to see the DeepSeek-R1 design card. Each model card reveals key details, including:

- Model name

  • Provider name
  • Task classification (for example, Text Generation). Bedrock Ready badge (if applicable), suggesting that this design can be signed up with Amazon Bedrock, enabling you to utilize Amazon Bedrock APIs to conjure up the design

    5. Choose the design card to see the model details page.

    The design details page consists of the following details:

    - The design name and company details. Deploy button to release the design. About and Notebooks tabs with detailed details

    The About tab includes essential details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage standards

    Before you deploy the design, it's recommended to evaluate the design details and license terms to validate compatibility with your use case.

    6. to proceed with release.

    7. For Endpoint name, use the immediately generated name or forum.altaycoins.com create a customized one.
  1. For Instance type ¸ choose a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, enter the number of circumstances (default: 1). Selecting appropriate instance types and counts is vital for cost and efficiency optimization. Monitor your deployment to change these settings as needed.Under Inference type, Real-time inference is chosen by default. This is optimized for sustained traffic and low latency.
  3. Review all configurations for accuracy. For this model, we highly recommend adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
  4. Choose Deploy to release the model.

    The implementation process can take several minutes to finish.

    When release is total, your endpoint status will alter to InService. At this moment, the model is all set to accept reasoning requests through the endpoint. You can keep track of the release development on the SageMaker console Endpoints page, which will show relevant metrics and status details. When the deployment is total, you can invoke the model using a SageMaker runtime customer and incorporate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To start with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the essential AWS permissions and environment setup. The following is a detailed code example that shows how to release and use DeepSeek-R1 for inference programmatically. The code for releasing the model is provided in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run additional demands against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail using the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Tidy up

    To prevent unwanted charges, complete the steps in this area to tidy up your resources.

    Delete the Amazon Bedrock Marketplace deployment

    If you released the model using Amazon Bedrock Marketplace, complete the following steps:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, select Marketplace implementations.
  5. In the Managed deployments area, locate the endpoint you want to delete.
  6. Select the endpoint, and on the Actions menu, pick Delete.
  7. Verify the endpoint details to make certain you're erasing the proper deployment: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain expenses if you leave it running. Use the following code to erase the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and deploy the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting begun with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business build ingenious options utilizing AWS services and accelerated compute. Currently, he is focused on establishing strategies for fine-tuning and enhancing the reasoning efficiency of large language designs. In his downtime, Vivek takes pleasure in treking, seeing movies, and trying various cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is a Professional Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads item, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about developing options that help clients accelerate their AI journey and unlock business worth.